

COURSE OVERVIEW DE0250-4D Subsurface Production Operations

Course Title

Subsurface Production Operations

Course Date/Venue

Session 1: August 12-15, 2024/Boardroom 1, Elite Byblos Hotel Al Barsha, Sheikh Zayed Road, Dubai, UAE

Session 2: November 18-21, 2024/Club B

Meeting Room, Ramada Plaza by

Wyndham Istanbul City Center,

Istanbul, Turkey

DE0250-4D

Course Duration/Credits

Four days/2.4 CEUs/2.4 PDHs

Course Description

This practical, highly-interactive course includes real-life case studies where participants will be engaged in a series of interactive small groups and class workshops.

This course is designed to provide participants with a detailed and up-to-date overview of subsurface production operations. It covers the inflow and outflow performances, completion systems, tubing selection, design and installation; the perforation methods, formation damage, matrix acidizing and hydraulic fracturing; and the well production problems such as toxic material production, inorganic –scale formation, corrosion, etc.

During this interactive course, participants will learn the artificial lift selection, ESP system selections and performance calculations; the gas lift systems; the latest principles of hydraulic pumping in oil wells, progressing cavity pumping design systems; and the evaluation and installation of downhole plunger equipment, wellhead and plunger surface equipment.

Course Objectives

Upon the successful completion of this course, each participant will be able to:-

- Apply and gain an in-depth knowledge on subsurface production operations
- Discuss the inflow and outflow performances, completion systems and carryout tubing selection, design and installation
- Describe perforation methods, formation damage, matrix acidizing and hydraulic fracturing
- List well production problems such as toxic material production, inorganic -scale formation, corrosion, etc.
- Perform artificial lift selection, ESP system selections and performance calculations and design gas lift systems
- Employ the latest principles of hydraulic pumping in oil wells, progressing cavity pumping design systems as well as the evaluation and installation of downhole plunger equipment, wellhead and plunger surface equipment

Exclusive Smart Training Kit - H-STK®

Participants of this course will receive the exclusive "Haward Smart Training Kit" (H-STK®). The H-STK® consists of a comprehensive set of technical content which includes electronic version of the course materials, sample video clips of the instructor's actual lectures & practical sessions during the course conveniently saved in a Tablet PC.

Who Should Attend

This course provides an overview of all significant aspects and considerations of surface production operations for production engineers, drilling engineers, process engineers, petroleum engineers and field operations engineers, superintendents, supervisors and foremen. Technical and operations staff from other disciplines, who require a cross-training to or a basic understanding of the subsurface production operations will find this course very useful.

Training Methodology

All our Courses are including Hands-on Practical Sessions using equipment, Stateof-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours:-

30% Lectures

20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations:-

The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the ANSI/IACET 2018-1 Standard which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the ANSI/IACET 2018-1 Standard.

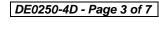
Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking Continuing Education Units (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award 2.4 CEUs (Continuing Education Units) or 24 PDHs (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)

Haward Technology is accredited by the British Accreditation Council for Independent Further and Higher Education as an International Centre. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Accommodation


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Brendon Billings, MSc, BSc, is a Senior Petroleum Engineer and Well Service Consultant with over 30 years of international experience in Drilling/Reservoir/Petroleum **Engineering** Service and Well Operations. He is a recognized authority in "Hands On" Service and Drilling Operations, Well Completions (Riggless Operations), Product Optimization, Wellhead Operations, Wellbore Interventions, High Volume Lift Project Management, Reservoir Optimization, Well

Testing, Wire/Slickilne Equipment and Operations, Coil Tubing, Water Flooding, Electric Submersible Pumps (ESPs), Gas Lifts & Steam Assist Gravity Drain (SAGD) Applications, Facility Inspection, Root Cause Failure Management and Power Factor Management. Currently, he is the President of a large specialized engineering services provider to the North-American Sedimentary Basin Production and other international clients. Moreover, he occupies a consultant position and remains to offer his expertise in many areas of the drilling discipline and is well recognized & respected for his process, procedural expertise, modus operandi as well as ongoing participation, interest and experience in continuing to promote technology to producers around the world.

Throughout his long career life, Mr. Billings has worked for many international companies and has spent several years managing technically complex wellbore interventions in both drilling & servicing. He is a well regarded for his process, procedural expertise and modus operandi. Further, he was the Projects Manager at Sherrit Petreola where he was fully responsible for all Reservoir Development activities. He has spent more than 2000 days total on Rig Floors for Drilling (onshore/offshore) and Well Servicing Operations jobs. Mr. Billings was the Senior Applications Expert for Schlumberger Canada (REDA Services) where he was greatly involved in high volume lift and reservoir optimization projects including specialty endeavours like SAGD and Gas Lift. He lead special projects for alternative technology applications and was referred to as the 'technical specialist' for severe services on ESP applications and had provided in-house & client instruction for ESP application schooling. Previously, he was the Artificial Lift Services Developer for Weatherford, a leading provider of oilfield services equipment for drilling, evaluation, completion, production and intervention areas. Herein, he was tasked to introduce new ESP technology and lead a project team for ESP facility development & design. Much earlier in his career, he has held positions such as **Operations Supervisor**, Rig Consultant, Project Manager, Regional Manager, Engineering Representative, International Engineering Support Technician, Facility Services Manager and Power Plant Engineer.

Mr. Billings has Master and Bachelor degrees in Petroleum Engineering and Power Engineering. He is a licensed Professional Engineer, a Certified Instructor/Trainer and a well respected member of the Society of Petroleum Engineers (SPE). Further, he has conducted numerous industry short courses and SPE workshops.

Course Fee

Dubai	US\$ 6,750 per Delegate + VAT . This rate includes H-STK [®] (Haward Smart Training Kit), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.
Istanbul	US\$ 7,250 per Delegate + VAT . This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1

Day I	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Inflow & Outflow Performance The Production System • Reservoir Inflow Performance • Wellbore Flow Performance • Flow Through Chokes • System Analysis
0930 - 0945	Break
0945 – 1115	Completion Systems Packers • Methods of Conveyance • Metallurgy • Elastomers • ISO and API Standards • Packer Rating Envelopes • Flow Control Accessories • Subsurface Safety Systems • Cased-Hole Applications • Multilateral Completions • Operational Well Modes • Impact of Length and force Changes To The Tubing String • Combination Tubing/Packer Systems
1115 – 1215	Tubing Selection, Design & Installation Oilfield Tubing • API/ISO Tubing Requirements • Tubing Design Factors • Tubing Inspection • Tubing Handling • Coiled Tubing
1215 - 1230	Break
1230 – 1420	Perforating Perforating Methods • Basic Perforating Design-Variables of Flow Through A Perforation • Temperature Effect • Basic Perforating Design-What Is Necessary for The Optimum Flow Path • Improving Flow Capacity • Cement and Casing Damage • Perforating Multiple Strings and Thick Cement • Perforating for Different Simulations • Perforating in Highly Deviated Wells • Perforating Equipment • Limited Penetration Charges • Pipe Cutoff Methods
1420 - 1430	Recap
1430	Lunch & End of Day One
	

Day 2

0730 - 0930	Formation Damage
	Quantify Formation Damage • Determination of Flow Efficiency and Skin •
	Formation Damage Vs. Pseudodamage • Drilling-Induced Formation Damage
	Formation Damage Caused by Completion and Workover Fluids
	During Perforating and Cementing • Formation Damage Caused by Fines
	Mitigation • Formation Damage Caused by Swelling Clays • Formation
	Damage in Injection Wells • Formation Damage Resulting From Paraffins and
	Asphaltenes • Formation Damage Resulting Form Emulsion and Sludge
	Formation • Formation Damage Resulting From Condensate Banking •
	Formation Damage Resulting From Gas Breakout • Formation Damage
	Resulting From Water Blocks • Formation Damage Resulting for Wettability
	Alteration • Bacterial Plugging
0930 - 0945	Break

	Matrix Acidizing
	Two Basic Acidizing Treatments • Purpose/Applications • Effects of
	Acidizing: Undamaged Well • Selecting Successful Acidizing Candidates •
	Production History Plots • Offset Well Comparison • Pressure Buildup Tests
0945 – 1100	Well Flow Analysis
	Extent/Type of Damage • Damage Removal by Chemical Solvents •
	Formation Response To Acid • Formation Properties • Formation Matrix
	Properties • Formation Mineralogy • Methods of Controlling Precipitates •
	Acid Treatment Design • Matrix Acidizing Deign Guidelines
1100 - 1230	Matrix Acidizing (cont'd)
	Acid Type and Concentration • Retarded Hf Acids • Geochemical Models •
	Acid Placements and Coverage • Mechanical Techniques • Particulates •
	Viscous Acid • Advances in Acid Diversion • Horizontal Wells • Acid
	Additives • Job Supervision • Safety and Environment Protection • Well
	Preparation • Quality Control • Injection-Rate Control and Monitoring
	Pressure Behavior During Acid Injection
	Treatment Effectiveness • Spent Acid Production Control • Produced Fluid
	Sampling • Evaluation of Acid Treatments
1230 – 1245	Break
1245 – 1420	Hydraulic Fracturing
	Fracture Mechanics • Fracture Propagation Models • Fracturing Fluids and
	Additives • Propping Agents and Fracture Conductivity • Fracture
	Treatment Design • Acid Fracturing • Fracturing High –Permeability
	Formations • Fracture Diagnostics • Post-Fracture Well Behavior
1420 – 1430	Recap
1430	Lunch & End of Day Two

Dav 3

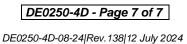
Day 3	
	Well Production Problems
0730 - 0930	Asphaltenes • Waxes • Toxic-Materials Production • Hydrates • Water
	Control • Inorganic -Scale formation • Corrosion
0930 - 0945	Break
0945 – 1100	Artificial Lift Selection
	Reservoir Pressure and Well Productivity • Reservoir Fluids • Long-Term
	Reservoir Performance and Facility Constraints • Types of Artificial Lift •
	Selection Methods • Sample Run-Life Information
1100 1220	Gas Lift
	Designing A Gas Lift System • Compressor Horsepower • Gas Fundamentals
	• Gas Lift Equipment • Gas Lift Valve Mechanics • Production-Pressure
1100 – 1230	Factor and Valve Spread • Dynamic Gas Lift Valve Performance • Design of
	Gas Lift Installations • Installation Design Methods • Intermittent-Flow Gas
	Lift • Operation of Gas Lift Installations • Gas Lift for Unusual Environments
1230 - 1245	Break
1245 – 1420	Electrical Submersible Pumps (ESP)
	ESP System • ESP System Selection • Performance Calculations • Problem
	Solving
1420 - 1430	Recap
1430	Lunch & End of Day Three

Day 4

0730 - 0930	Hydraulic Pumping in Oils Wells
	Downhole Pumps • Principles of Operation • Downhole Pump Accessories •
	Surface Equipment
0930 - 0945	Break
	Progressing Cavity Pumping Systems
0945 – 1100	PCP Lift System Equipment • PCP System Design • Specific Application
0943 - 1100	Considerations • PCP System Installation, Automation, Troubleshooting, and
	Failure Diagnosis
	Plunger Lift
	Applications • Design and Models • Basic Foss and Gaul Equations •
	Equipment Installation and Maintenance • Evaluation and Installation of
1100 - 1245	Downhole Plunger Equipment • Evaluation and Installation of Wellhead and
	Plunger Surface Equipment • Design Considerations and Plunger Selection •
	Evaluation of Control Methods • Evaluation and Modification of Production
	Facilities
1245 - 1300	Break
1300 - 1345	Open Forum & General Discussion
1345 - 1400	Course Conclusion
1400 – 1415	POST-TEST
1415 – 1430	Presentation of Course Certificates
1430	Lunch & End of Course

Practical Sessions

This practical and highly-interactive course includes real-life case studies and exercises:-


<u>Course Coordinator</u> Mari Nakintu, Tel: +971 2 30 91 714, Email: <u>mari1@haward.org</u>

