COURSE OVERVIEW ME0615 Operation, Maintenance & Troubleshooting of Pumps & Compressors

(30 PDHs)

Course Title

Operation, Maintenance & Troubleshooting of Pumps & Compressors

Course Date/Venue

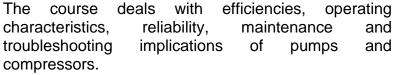
December 16-20, 2024/Midtown Board Room, Hampton Inn Houston Downtown by Hilton. London, United Kingdom

Course Reference

ME0615

Course Duration/Credits

Five days/3.0 CEUs/30 PDHs


Course Description

This practical and highly-interactive course includes various practical sessions and exercises. Theory learnt will be applied using our state-ofthe-art simulators.

Pumps and compressors are used extensively in the process industries. There are many types with widely configurations and applications. varving represent a significant part of the capital and operating costs of most plants, and optimizing their selection, operation and maintenance are therefore, of major economic importance.

The course will cover the operating principles of compressors, specifications, pumps and thermodynamics, effects of efficiency on operating costs, energy usage, and effect on plant costs, materials of construction, selection, troubleshooting and maintenance.

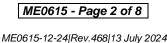
The course will also cover plant run-length extension surveys, organizing for successful turnarounds and ongoing reliability improvement, and preventive vs. predictive maintenance strategy decisions.

The course will provide the participant with a basic as well as advanced pump and compressor technology knowledge, inventory required to successfully select, apply, operate, troubleshoot and maintain pumps and compressors.

At the end of this course, participants will have gained a thorough understanding of the various types of pumps and compressors available to most industrial users, including sizing and application criteria, maintainability, reliability, vulnerability and troubleshooting issues. Participants will learn simple techniques and short-cut methods of machinery sizing and selection. This replaces tedious hand or other methods of calculation and will serve as a fast way to arrive at sensitivity or influence of parameter changes on equipment performance.

Course Objectives

Upon the successful completion of this course, each participant will be able to: -


- Apply systematic techniques in the operation, maintenance and troubleshooting of pumps and compressors
- Discuss the concepts of pump types and terminology and introduce the theory and operating characteristics of centrifugal pumps
- Identify the common types of compressors and the ranges of application and limitation and have an overview of centrifugal compressors including its type and function
- Recognize the principles of equipment failure patterns including its type and review the common factors of why equipment fails
- Differentiate between the different aspects of machinery corrosion and to make the correct selection of material for a given application
- Determine the basic approaches to machinery troubleshooting and troubleshoot most possible faults and failures of pumps and compressors and discover the various approaches to be considered in applying corrective actions
- Employ the principles of dry gas, packing and mechanical seals and recognize their components and functions
- Develop a good background on seal support systems including its selection strategies and other applications and explain the features of dry gas seal for centrifugal gas compressor
- Analyze and troubleshoot mechanical seal failure and identify the various maintenance & repair methods used
- Discuss the basic concept of bearing care & maintenance, bearing classification and lubrication management
- Identify the various types of couplings and recognize their purpose & function and list-down the different alignment methods used
- Recognize and implement the various preventive and predictive maintenance techniques and strategies used for pumps & compressors

Who Should Attend

This course provides an overview of all significant aspects and considerations of pumps and compressors for those who are involved in the operation, maintenance and troubleshooting of such equipment. This includes rotating equipment and machinery engineers, plant and maintenance engineers and other technical staff involved in turbomachinery management, operation and maintenance. Further, it is suitable for operations, process and process unit contact, mechanical and project engineers.

Course Certificate(s)

Internationally recognized certificates will be issued to all participants of the course who completed a minimum of 80% of the total tuition hours.

Certificate Accreditations

Certificates are accredited by the following international accreditation organizations: -

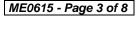
The International Accreditors for Continuing Education and Training (IACET - USA)

Haward Technology is an Authorized Training Provider by the International Accreditors for Continuing Education and Training (IACET), 2201 Cooperative Way, Suite 600, Herndon, VA 20171, USA. In obtaining this authority, Haward Technology has demonstrated that it complies with the **ANSI/IACET 2018-1 Standard** which is widely recognized as the standard of good practice internationally. As a result of our Authorized Provider membership status, Haward Technology is authorized to offer IACET CEUs for its programs that qualify under the **ANSI/IACET 2018-1 Standard**.

Haward Technology's courses meet the professional certification and continuing education requirements for participants seeking **Continuing Education Units** (CEUs) in accordance with the rules & regulations of the International Accreditors for Continuing Education & Training (IACET). IACET is an international authority that evaluates programs according to strict, research-based criteria and guidelines. The CEU is an internationally accepted uniform unit of measurement in qualified courses of continuing education.

Haward Technology Middle East will award **3.0 CEUs** (Continuing Education Units) or **30 PDHs** (Professional Development Hours) for participants who completed the total tuition hours of this program. One CEU is equivalent to ten Professional Development Hours (PDHs) or ten contact hours of the participation in and completion of Haward Technology programs. A permanent record of a participant's involvement and awarding of CEU will be maintained by Haward Technology. Haward Technology will provide a copy of the participant's CEU and PDH Transcript of Records upon request.

British Accreditation Council (BAC)


Haward Technology is accredited by the **British Accreditation Council** for **Independent Further and Higher Education** as an **International Centre**. BAC is the British accrediting body responsible for setting standards within independent further and higher education sector in the UK and overseas. As a BAC-accredited international centre, Haward Technology meets all of the international higher education criteria and standards set by BAC.

Course Instructor(s)

This course will be conducted by the following instructor(s). However, we have the right to change the course instructor(s) prior to the course date and inform participants accordingly:

Mr. Ahmed Mady is a Senior Mechanical Engineer and Project Manager with over 40 years of practical experience. His experience covers Pump Selection, Installation, Performance & Control, Pump & Valve Operation, Control, Maintenance & Troubleshooting, Aviation Fueling Operations, Pumps, Compressors & Turbines Selection, Operation, Heat Exchanger Design, Operation,

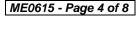
Performance, Inspection, Maintenance & Repair, Steam Boilers Operation, Maintenance and Control System, Heat Exchangers Operations, Maintenance & Troubleshooting, Water Tanks Filling Station Operation, Water Pipes Inspection & Repair, Water Treatment Technology, RO Plants, MSF Plants, Industrial Water Treatment, Piping System, Water Filtering, Pump Selection, Installation, Performance & Control, Compressors & Turbines Selection & Operation, Heat Exchangers Design & Selection, TEMA & ASME Section VIII Requirements, Steam Boilers Operation & Maintenance, Valve Operation & Troubleshooting, Aviation Operations, Maintenance Management, Reliability Engineering. Centered Maintenance Auditing. Reliability Maintenance. Maintenance Benchmarking, Maintenance Planning, Root Cause Failure Analysis, Lubrication Technology, Cost Control & Performance Improvement.

Mr. Ahmed has travelled all over Europe, Asia and the Americas joining numerous conferences and workshops with international companies such as IBM, System Science Corporation (SSC) and International Air Transport Association (IATA).

Earlier in his career, he had occupied several challenging roles with several large Logistics and maintenance companies as a Maintenance Manager, Maintenance Engineer, Logistics Planning Branch Chief, Commander of the Air Force Logistics, Systems Analyst, Training Branch Chief, Systems & Communication Engineer and Computer Programmer.

Mr. Ahmed has a Bachelor degree in Mechanical Engineering and a Certified Further, he has gained Diplomas on Civil Aviation Trainer/Instructor. Engineering, Islamic Studies and Information Systems & Technology. Moreover, he is a Certified Internal Verifier by City & Guilds Level 4 Certificate in Leading the Internal Quality Assurance of Assessment Processes & Practice under the IQA Qualification (Internal Quality Assurance) and a Certified Assessor by City & Guilds Level 3 Certificate in Assessing Vocational Achievement under the TAQA Qualification (Training, Assessment & Quality Assurance) and a Certified Trainer/Assurance/Internal Verifier of the British Institute of Leadership & Management (ILM), UK. Further, he has delivered numerous trainings, workshops and conferences and projects worldwide.

<u>Accommodation</u>


Accommodation is not included in the course fees. However, any accommodation required can be arranged at the time of booking.

Course Fee

US\$ 8,800 per Delegate + **VAT**. This rate includes Participants Pack (Folder, Manual, Hand-outs, etc.), buffet lunch, coffee/tea on arrival, morning & afternoon of each day.

Training Methodology

All our Courses are including **Hands-on Practical Sessions** using equipment, State-of-the-Art Simulators, Drawings, Case Studies, Videos and Exercises. The courses include the following training methodologies as a percentage of the total tuition hours: -

30% Lectures
20% Practical Workshops & Work Presentations

30% Hands-on Practical Exercises & Case Studies

20% Simulators (Hardware & Software) & Videos

In an unlikely event, the course instructor may modify the above training methodology before or during the course for technical reasons.

Course Program

The following program is planned for this course. However, the course instructor(s) may modify this program before or during the course for technical reasons with no prior notice to participants. Nevertheless, the course objectives will always be met:

Day 1: Sunday, 16th of December 2024

<u> </u>	
0730 - 0800	Registration & Coffee
0800 - 0815	Welcome & Introduction
0815 - 0830	PRE-TEST
0830 - 0930	Introduction
	Overview of Rotating Equipment • Understanding How Equipment Works
0930 - 0945	Break
0945 – 1100	Pump Types and Terminology
	Pump Basics ● Pump Terminology ● Nomenclature & Definitions
	Centrifugal Pumps Overview
1100 – 1215	Centrifugal Pump Theory • Operating Characteristics • Centrifugal • Pump
	<i>Operation</i> ● <i>Cavitation</i> & <i>NPSH</i>
1215 – 1230	Break
	Centrifugal Pumps Overview (cont'd)
1230 - 1330	Minimum Continuous Safe Flow (MCSF) • Types of Centrifugal Pumps •
	Troubleshooting & Preventive Maintenance for Pumps
	Compressor Types and Terminology
1330 - 1420	Centrifugal • Axial • Reciprocating • Helical Screw • Ranges of Application &
	Limitations
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day One

Day 2: Monday, 17th of December 2024

Day 2:	Monday, 17" of December 2024
0730 - 0930	Centrifugal Compressors Overview
	Rotors • Balancing • Rotor Dynamics • Impellers • Casings •
	Troubleshooting & Preventive Maintenance for Compressors • Bearings •
	Seals: Labyrinths, Oil Seals & Self-Acting Gas Seals • Couplings • Controls
0930 - 0945	Break
0945 – 1100	Equipment Failure Patterns
	Materials Selection • Types of Corrosion • Bath-Tub Curve • Actual
	Equipment Failure Patterns • Actions to Minimize Failure Effect
1100 – 1215	Basic Approaches to Machinery Troubleshooting
	Examples from Recent Failure Incidents Attributed to Design Defects •
	Processing & Manufacturing Deficiencies
1215 - 1230	Break
1230 - 1245	Case Studies
1245 – 1400	Troubleshooting Faults and Applying Corrective Action
	Equipment Performance Monitoring • Vibration Analysis • Fast Fault Finding
1400 – 1415	Vibration Analysis DVD's
1415 – 1420	Case Studies
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Two

Day 3: Tuesday, 18th of December 2024

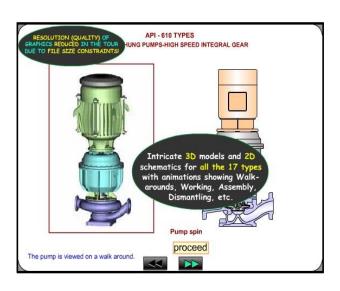
Day 3.	ruesday, 16 of December 2024
0730 - 0930	Troubleshooting Faults and Applying Corrective Action (cont'd)
	Acoustical Troubleshooting ● Infra-red Inspection ● Oil Analysis
0930 - 0945	Break
0945 – 1100	Introduction to Dry Gas Seals
	Principle of Operation • Materials of Construction • Manufacturing &
	Verification Testing
1100 – 1215	Packing and Mechanical Seals
	Compression Packing • Molded (Automatic) Packing • Basic Principles of
	Mechanical Seals • Face Materials • Secondary Seal Materials • Single
	Mechanical Seals • Single Mechanical Seal • Flushing Plans
1215 - 1230	Break
1230 - 1300	Flowserve DVD
1300 – 1330	Case Studies
1330 – 1400	Seal Support Systems
	Dual Sealing Systems & Flushing Plans • API 682 Reference Guide • Gas
	Barrier Seal Technology for Pumps • Support Systems for Dry Gas (Self
	Acting) Compressor Seals • Mechanical Seal Selection Strategies
1400 – 1420	Dry Gas Seal for Centrifugal Gas Compressors
1420 - 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Three

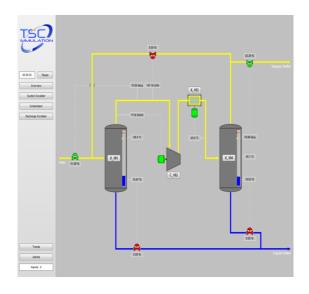
Day 4: Wednesday, 19th of December 2024

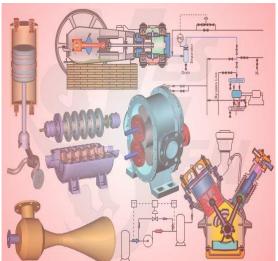
Day 4.	Wednesday, 19 of December 2024
0730 - 0930	Mechanical Seal Failure Analysis and Troubleshooting
	Failure Analysis • Mechanical Seal Troubleshooting • Determining Leakage
	Rates • Ascertaining Seal Stability
0930 - 0945	Break
0945-1100	Mechanical Seal Maintenance and Repair
	Bellows Seal Repair • Cartridge Seal Installation & Management • Seal Face
	Care
1100 – 1215	Bearing Care and Maintenance
	Basic Bearing Concepts • Bearing Classifications • Bearing Care &
	Maintenance • Lubrication Management Break
1215 – 1230	Break
1230 – 1400	Couplings and Alignment
	Purpose of Couplings • Types of Couplings • Alignment Methods •
	Foundation & Grouting Guidelines
1400 - 1415	Flowserve DVD
1415 - 1420	Case Studies
1420 – 1430	Recap
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Topics that were Discussed Today & Advise Them of the Topics to be Discussed
	Tomorrow
1430	Lunch & End of Day Four

Day 5: Thursday, 20th of December 2024

Day 5:	Inursday, 20" of December 2024
	Preventive Maintenance-Lubrication
0730 - 0915	Cost of Poor Lubrication • Fundamentals-Oil & Grease • Storage & Handling
	Methods
0915 - 0930	Flowserve DVD
0930 - 0945	Break
0945 – 1200	Preventive Maintenance-Lubrication (cont'd)
	Comparative Viscosity • Classifications
1200 – 1215	Lubrication DVD
1215 - 1230	Break
1230 – 1345	Preventive Maintenance
	General Philosophy ● Equipment Sparing Factor & Maintenance Approach
1345 – 1400	Course Conclusion
	Using this Course Overview, the Instructor(s) will Brief Participants about the
	Course Topics that were Covered During the Course
1400 - 1415	POST-TEST
1415 - 1430	Presentation of Course Certificates
1430	Lunch & End of Course






Simulator (Hands-on Practical Sessions)

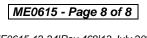
Practical sessions will be organized during the course for delegates to practice the theory learnt. Delegates will be provided with an opportunity to carryout various exercises using the simulators "Centrifugal Pumps and Troubleshooting Guide 3.0", "SIM 3300 Centrifugal Compressor" and "CBT on Compressors".

Centrifugal Pumps and Troubleshooting Guide 3.0

SIM 3300 Centrifugal Compressor Simulator

CBT on Compressors

Course Coordinator


Mari Nakintu, Tel: +971 2 30 91 714, Email: mari1@haward.org

